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Summary 
 
Computability theory begins with a precise explication (known as the Church-Turing 
Thesis) of what it means to say that a problem is solvable by an algorithm. This 
explication can be given in a number of different ways, the most popular of which 
involve Turing machines. The methods of computability theory make it possible to 
study problems that can not be solved in this manner, that are as one says, not 
computable. 
 
A recursively enumerable (r.e.) set of natural numbers is the set of natural number 
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inputs to some given Turing machine which result in the machine eventually halting. 
Although computable sets are r.e., there are also r.e. sets that are not computable. 
Moreover such sets come in a variety of kinds, and these lead to particular forms of 
Gödel’s Incompleteness Theorem.  
 
Computability theory makes it possible to prove that problems in various branches of 
mathematics fail to have algorithmic solutions. We survey problems in algebra (word 
problems) and number theory (Hilbert’s tenth problem) that have been proved 
unsolvable in this sense.  
 
Using computability theory one can make sense of assertions to the effect that one 
problem is more unsolvable than another. Classification of problems from this point of 
view is seen to have important connections with classifications based on the number of 
logical quantifiers needed to specify a particular problem.  
 
Computability theory is based on an idealization: one is dealing with computation 
without limits to available resources of space and time. Complexity theory attempts a 
somewhat more realistic approach in which resource bounds are explicitly taken into 
account. There is a large class of problems for which the best available algorithms 
involve a systematic time-consuming search. The “millennium” P=NP problem can be 
thought of as asking whether such searches can be avoided, whether there are shortcuts.  
 
1. Introduction 
 
Familiarity is assumed with the discussion of Turing machines, computability, the 
Church-Turing thesis, and unsolvable problems in the chapter on Formal Logic. In 
particular, let us consider a function f  defined on some subset S  of the natural 
numbers 0 1 2N …= , , ,  and with natural number values; f  is then undefined for numbers 
in S N S= − , the complement of S , i.e., the set of natural numbers that do not belong 
to S . Such a function is called partially computable if there is a Turing machine which 
started with a coded representation of the number n S∈  (e.g., by a string of 1n +  tally 
marks | ) on its tape, will eventually halt with a string encoding of ( )f n  on its tape, 
whereas if it is started with a coded version of a number n S∈ , the machine will never 
halt. In the special case when f  is defined on all of N , we call f  a computable 
function, and also say that f  is total. In the future, language will be abused as follows: 
we will speak of the number n  being on a Turing machine tape to mean that it is the 
string that encodes n  that is actually on the tape.  
 
We can also speak of a partially computable function g  of any n -tuple of natural 
number arguments 1 2 nx x … x, , ,  by beginning instead with such an n -tuple on the tape of 
a Turing machine. These arguments can be encoded, for example, by representing each 

ix  by a string of 1ix +  tally marks and then using a single blank square U to separate 
the adjacent arguments. So for example the arguments 3 1 4, ,  would be represented by 
the string  
 
|||| || |||||U U  
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Again in the special case where g  is defined for all natural number values of its 
arguments, g  is said to be computable. For historical reasons, computable functions are 
also referred to as recursive functions, and the entire subject dealing with diverse 
aspects of computability and non-computability is variously referred to as computability 
theory, recursive function theory, and recursion theory.  
 
The availability of a precise mathematical characterization of what can be computed 
opens up to serious study the non-computable. In this brief chapter, we begin, staying 
close to the computable, with the so-called recursively enumerable sets. Even here we 
find an interesting distinction among varieties of non-computability. We go on to make 
contact with problems in ordinary mathematics that can now be shown to be 
algorithmically unsolvable. Next, we go behind the recursively enumerable sets to 
survey the further reaches of the non-computable. Finally, descending back to the real 
world of finite resources, we briefly examine the complexity of computation.  
 
2. Recursive and Recursively Enumerable Sets 
 
With each set S  of natural numbers we associate its characteristic function SC  defined 
by:  
 

1 if
( )

0 otherwiseS

n S
C n

∈⎧
= ⎨ .⎩

 

 
Then the set S  is called computable or recursive if its characteristic function SC  is 
computable. Intuitively to say that a set S  is computable is to assert the existence of an 
algorithm that can distinguish members from non-members of S .  
 
Closely related to the notion of recursive set is that of recursively enumerable 
(abbreviated “r.e.”) set. A non-empty set S  is r.e. if there is a computable function f  
such that S  is the set of all values assumed by f , i.e., such that  
 

{ ( ) 0 1 2 }S f n n …= : = , , ,  
 
i.e., the recursive function f  “enumerates” S . The empty set ∅  is also taken to be r.e. 
An alternative, equivalent, characterization of r.e. sets is as follows: S  is r.e. if and only 
if there is a Turing machine such that when started with the code for a natural number n  
on its tape, the machine will eventually halt if and only if n S∈ , or equivalently, if there 
is a partially computable function f  which is defined precisely on members of S . Still 
another characterization (equivalent to the others mentioned) is: S  is r.e. if and only if 
there is a partially computable function f  for which: S  is the set of all numbers m  
such that for some n , ( )f n  is defined and ( )f n m= .  
 
The relation between the two notions: recursive set and r.e. set  is given by the 
following: 
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Theorem. The set S  of natural numbers is recursive if and only if the sets S  and S  
are both r.e.  
That recursive sets and their complements are r.e. is pretty obvious. On the other hand if 
we have computable functions f g,  enumerating S  and S , respectively, then an 
algorithm for computing SC  is as follows:  

1. Given natural number n   
2. Successively compute  

                         (0) (0) (1) (1) (2) (2)f g f g f g …, , , , , ,  
            until either:  
3. a value ( )f k n=  is reached, in which case the value ( ) 1SC n =  is 
returned,  
            or  
4. a value ( )g k n=  is reached, in which case the value ( ) 0SC n =  is 
returned.  

 
That either step 3 or step 4 will eventually be reached is clear because every natural 
number belongs either to S  or to S .  
 
Using the fact that there is a universal Turing machine (as explained in Formal Logic) it 
is easy to prove the following: 
Theorem. There is a partially computable function φ  of two arguments such that for 
each partially computable function f  of one argument, there is a number j  such that  
 

( ) ( )f n j nφ= ,  
 
where the equality is assumed to mean not only that both sides are equal when defined, 
but also that, when either side is undefined, the other is as well.  
 
To see this, let the code M  of Turing machine M  be chosen to be a natural number, 
and indeed let this be done in such a way that every natural number is the code of 
exactly one Turing machine. Let ( )m nφ ,  be the value computed by the universal 
machine U  when started with the coded representation of m  and some natural number 
n  on its tape, separated by a blank square. Then, if in particular, M  is a Turing 
machine that computes the partially computable function f , then  
 

( ) ( ) for allM n f n nφ , = .  
 
Now for each j N∈  let jW  be the set of numbers n  for which there exists a number m  
such that ( )j mφ ,  is defined and ( )j m nφ , = . Then we have at once the following 
 
Enumeration Theorem. For every r.e. set S , there is a number j  such that jS W= .  
Defining  
 

{ }nK n N n W= ∈ : ∈  
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we have the following 
 
Theorem. K  is r.e. but not recursive.  
 
Since K  is the set of all values assumed by the “diagonal” function ( )n nφ , , it follows 
at once that K  is r.e. On the other hand if K  were also r.e., we would have, by the 
Enumeration Theorem, for some j ,  
 

jK W= .  
 
But this would lead to the contradiction  
 

jj K j W j K∈ ⇔ ∈ ⇔ ∈ .  
 
If we think of a Turing machine M  which eventually halts when started with a number 
n  on its tape if and only if n K∈ , we see that in proving that K  is not computable, we 
are also demonstrating the unsolvability of the halting problem mentioned in Formal 
Logic .  

2.1. m-Complete Sets, Creative Sets, and Simple Sets 

Given an r.e. set C  which is not recursive and an r.e. set R C⊆ , since R  can’t be r.e., 
there must be numbers r C R∈ − . Such a set C  is called creative if there is an 
algorithm enabling one to compute such a number r  given the code of a Turing 
machine M  such that R  is the set of numbers n  for which M  will eventually halt 
when started with n  on its tape. More formally:  
 
An r.e. set C  is called creative if there is a computable function f  such that whenever 

jW C⊆ , we have ( ) jf j C W∈ − . Creative sets are obviously not recursive, For, if a 

creative set C  were recursive, then its complement C  would be r.e., i.e., jC W=  for 

some j . Hence there couldn’t be a function f  with ( ) jf j C W∈ − .  
 
Theorem. The set K  is creative.  
 
In this case the identity function ( )f n n=  does the job. Namely, let jW K⊆ .  Then for 
all n ,  
 

j nn W n K n W∈ ⇒ ∈ ⇒ ∈/  
 
Thus,  
 

j jj W j W∈ ⇒ ∈ ,/  
 
and so, jj W∈ ,/  and therefore j K∈ .  Finally, jj K W∈ − .   
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Creative sets, introduced by E.L. Post in 1943, have a number of interesting properties. 
For example, it can be proved that they are all m-complete in the following sense:  
The r.e. set S  is called m-complete if for every r.e. set R , there is a computable 
function f  such that for all n N∈ ,  
 

( )n R f n S∈ ⇔ ∈ .  
 
The converse is also true: namely every m-complete set is creative. In fact, as was 
shown by Myhill in 1955, creative sets are all recursively isomorphic in the following 
sense:  
 
Sets A B,  of natural numbers are said to be recursively isomorphic if there is a one-one 
computable function f  onto the natural numbers (a “permutation”) such that for all n ,  
 

( )n A f n B∈ ⇔ ∈ .  
 
Given a creative set C  with computable function f  as specified in the definition it can 
be proved that there are infinite r.e. sets U  such that U C⊆ . The idea is to begin with a 
number 0j  such that 

0j
W =∅ . Then  

 

00{ ( )} jf j C W⊆ − .  
 
So we find 1j  such that 

1 0{ ( )}jW f j= . Then  
 

10 1{ ( ) ( )} jf j f j C W, ⊆ − .  
 
So we find 2j  such that 

2 0 1{ ( ) ( )}jW f j f j= , . Continuing the process one obtains the 
infinite set  
 

0 1 2{ ( ) ( ) ( ) }U f j f j f j …= , , ,  
 
If this process is carried out carefully one can show that U  is indeed r.e.  
 
In the light of this result, one is led to ask whether there exist r.e. sets S  such that S  is 
infinite but has no infinite r.e. subsets. In 1943, E.L. Post called sets with this property 
simple, and showed how to construct such sets. Following his ideas we begin with the 
array shown in Table 1. 
 

 0 1 2 3  
0 (0 0)φ ,  (0 1)φ ,  (0 2)φ ,  (0 3)φ ,   
1 (1 1)φ ,  (1 1)φ ,  (1 2)φ ,  (1 3)φ ,   
2 (2 2)φ ,  (2 1)φ ,  (2 2)φ ,  (2 3)φ ,   
3 (3 3)φ ,  (3 1)φ ,  (3 2)φ ,  (3 3)φ ,   
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.      

.      

.      
 

Table 1: Construction of r. e. S simple in the sense of Pest 
 
Now, we imagine the following algorithm by which a set S  is defined: Step-by-step this 
array is traversed, e.g., along the diagonals. As each entry in the array is reached, the 
computation of the indicated value of φ  is initiated. However, the traversal is to be 
interrupted whenever termination of one of these computations occurs. For each value 
of j , if it should happen that a computation of some ( )j mφ ,  terminates with 

( ) 2j m n jφ , = > , then the first time this occurs, the number n  is placed in the set S .  
 
If this is arranged carefully, the set S  will be r.e. Furthermore for any j  for which jW  

is infinite, by our construction jW S∩ ≠∅ . Hence, S  contains no infinite r.e. set. An 
easy counting argument shows that at most k  of the numbers 0 1 2… k, , ,  have been 
placed in S  by this construction. So, at least k  of these numbers belong to S . Hence 
S  is infinite. Putting this information together, we see that S  is simple.  
 
In this proof Post devised a technique that has been used in ever-more elaborate ways to 
construct r.e. sets with desired properties: one produces an infinite list of requirements 
such that a set meeting those requirements automatically has the property in question. In 
the case of Post’s construction of a simple set S , the requirements were:  
 

• for each j  for which jW  is infinite, jS W∩ ≠∅ ;  
• for each k , at most k  of the first 2k  natural numbers are in S .  
 

Then, a construction of S  was set up, meeting these requirements, one at a time. In 
more elaborate constructions, such as those using the so-called priority method, 
requirements once met can be “injured” at a later stage, as long as they are eventually 
fully satisfied. An example using such methods, far too complicated to discuss in this 
article, is the existence of an r.e. set M  that is maximal in the following sense: if 
Q M⊇  is r.e., then either Q M−  or N Q−  is finite, where as usual {0 1 2 }N …= , , , . Of 
course such a maximal set is simple.  

2.2. Algorithmic View of Gödel Incompleteness 

Another point of view regarding Gödel’s epochal incompleteness theorem (see Formal 
Logic), is provided by considerations involving algorithms and r.e. sets. We begin by 
considering, in an extremely general manner, what the minimum is to be expected of a 
system providing mathematical “proofs.” Such a proof should presumably take the form 
of a string of characters. Moreover, a minimum requirement would seem to be that there 
be an algorithm for testing whether a purported proof of some given proposition really 
is what it purports to be. Now we restrict attention to propositions of a particular form, 
namely propositions that assert that some natural number n  belongs to some fixed 
definite set A . Then, invoking the Church-Turing thesis, one can easily show that the 
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set PA  of n  for which the proposition n A∈  is provable in a given proof system P  
must be an r.e. set. The system P  is called sound if PA A⊆ , i.e. if every statement 
provable in P  is true. Then we can easily prove the following:  
 
Theorem. Let R  be an r.e. set that is not recursive, and let P  be a sound proof system 
for R . Then there is a number Pk R R∈ − , i.e., the statement k R∈  is true but not 
provable in the proof system P .  
 
Otherwise, it would be the case that PR R= , and this is impossible because PR  is r.e. 
while R  is not.  
 
This form of Gödel’s incompleteness theorem takes on a particularly striking form when 
the r.e. set R  is taken to be creative or to be simple.  
 
Theorem. Let C  be a creative set, and let P  be any sound proof system for C  with 

PjW C= . Then there is a computable function f  such that ( ) jf j C W∈ − , i.e., the 

statement ( )f j C∈  is true but not provable in the proof system P .  
 
It is this property that Post wished to emphasize when he suggested the term “creative.” 
The point is that not only are there unprovable truths of the form k C∈ , but such truths 
are obtainable algorithmically from a specification of P . This suggests augmenting a 
given proof system P  by accepting the unprovable truth as a new “axiom.” And then 
this process can be iterated obtaining more and more powerful proof systems. To Post 
this emphasized the “creative” nature of mathematics, inevitably bursting the bounds of 
any given proof system.  
 
Theorem. Let S  be a simple set, and let P  be a sound proof system for S . Then the set 

PS S−  is finite.  
 
Thus, no matter how “powerful” the proof system P  may be, it can never serve to prove 
more than a finite number of propositions of the form k S∈ . Later we shall see that 
these propositions are each equivalent to a statement about natural numbers involving 
nothing more complicated than addition and subtraction. 
 
- 
- 
- 
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